Ядерная физика Свойства ядер Модели атомных ядер

 

Строение и общие свойства атомных ядер
  Протонно-нейтронная структура ядра.
 

Свойства ядер

 Заряд ядра
  Масса ядра и масса атома Масса ядра является одной из его самых важных характеристик. Массу ядра нуклида данного состава (А,Z) будемобозначать М(А,Z) или М(АХ), а массу соответствующего атома Мат.
 

Связь между массой любого тела и его полной энергией

 

Масса атома

 Энергия связи ядра Ядро представляет систему связанных между собой нуклонов. Возникновение связанного состояния возможно только под действием ядерных сил притяжения, удерживающих нуклоны в ограниченном объеме. Устойчивость связанного состояния обеспечивается тем, что ядро как система из взаимодействующих между собой нуклонов должна иметь минимум полной энергии. Полная энергия Е1 системы из А нуклонов до объединения в ядро, т.е. находящихся между собой на таких расстояниях, когда действием сил между ними можно пренебречь, будет равна (массы выражены в единицах энергии)
 

Cистема центра инерции

 

Дефект массы ядра

 

Удельная энергия связи

 

Максимум удельной энергии связи

 Размер ядра Первые представления о размерах ядра были получены Резерфордом при экспериментальном изучении рассеяния α-частиц с энергией ~ 5 МэВ при прохождении через тонкие пленки золота. Наблюдалось, что некоторое количество α-частиц рассеивается на очень большие углы θ, почти до 180º. На этом основании в 1911 г. Резерфорд пришел к выводу, что в центре атома имеется область положительного электрического заряда, связанная с большой массой, сконцентрированной в очень малом объеме (по сравнению с объемом атома).
 Спин, магнитный и электрический моменты ядер Ядро, как пространственно ограниченная и связанная система взаимодействующих между собой нуклонов, во многих случаях может рассматриваться в целом как одна микрочастица. Так как нуклоны, из которых состоит ядро, обладают собственным механическим моментом, или спином, а также совершают движение относительно друг друга (орбитальное движение относительно центра инерции ядра), то и ядра должны иметь собственный механический момент (далее просто момент) или спин.
 

Проекция момента

 

Модуль вектора момента

 

Магнитный момент ядра

 

Квантовое число спина

 

Метод ядерного магнитного резонанса

 

Электрический момент ядра

 Возбужденные состояния ядер Возбуждение ядра – сообщение ядру дополнительной энергии, в результате чего увеличивается его внутренняя энергия, и ядро переходит из основного состояния в возбужденное. Ядро является квантовой системой взаимодействующих нуклонов и имеет строго определенный и дискретный набор разрешенных энергетических состояний. Уровни возбуждения бывают одночастичными и коллективными.
 Четность
 

Четность волновой функции

 Ядерные силы относятся к так называемым сильным взаимодействиям и существенно отличаются по своим свойствам от электромагнитных и гравитационных. В полной мере природа ядерных сил до настоящего времени не выяснена. Даже для простейшей системы из двух нуклонов неизвестна зависимость ядерных сил от расстояния между нуклонами. Короткодействие ядерных сил и свойство насыщения, многообразие свойств ядерных сил не позволяют создать законченную теорию, подобную квантовой электродинамики для расчета свойств атомов.
 

Интенсивность ядерного взаимодействия

 

Нецентральный характер ядерных сил

 Изотопический спин Сходство свойств у протона и нейтрона позволяет говорить оних как об одной частице - нуклоне, которая может быть в различных состояниях - протонном и нейтронном. Тождественность ядерных свойств нейтрона и протона можно описать с помощью формальной, но очень удобной квантовомеханической характеристики - вектора изотопического спина  (изоспина) ядра
 

Суммарный вектор изотопического спина

  Статистика
 

Квантовая статистика

 

Примеры использования статистики

Модели атомных ядер

 Необходимость и классификация моделей Атомное ядро представляет сложную многочастичную квантовую систему с сильным взаимодействием, обладающее чрезвычайно большим количеством свойств, порой противоречивых, и с теоретической точки зрения – объект исключительно сложный. Поэтому попытка создания последовательной и единой теории ядра сталкивается с целым рядом трудностей. При переходе от атома к ядру оказывается, что мы не располагаем достаточными знаниями о свойствах ядерных сил во всех деталях, необходимых для построения такой же законченной математической теории, как строение атома.
 Капельная модель
 

Физический смысл формулы Вейцзеккера

 

Следствия из формулы Вейцзеккера

 Оболочечная модель Ядра, содержащие магическое число нейтронов или протонов, т.е. 2, 8, 20, 50, 82, 126 (только для нейтронов), обладают повышенной удельной энергией связи по сравнению с «соседними» ядрами, являются сферически симметричными (имеют нулевой электрический квадрупольный момент), имеют большую распространенность в природе. Нуклиды с магическими ядрами имеют наибольшее число стабильных изотопов и изотонов.
 

Построение оболочечной модели

 

Систематика уровней

Радиоактивные превращения ядер
 Определение, виды радиоактивности, радиоактивные семейства
 

Радиоактивные семейства ( ряды )

 Основные законы радиоактивного распада Радиоактивный распад – явление принципиально статистическое. Нельзя предсказать, когда именно распадется данное ядро, а можно лишь указать с какой вероятностью оно распадется за тот или иной промежуток времени. Распад отдельного радиоактивного ядра не зависит от присутствия других ядер и может произойти в любой интервал времени. Наблюдения за очень большим числом одинаковых радиоактивных превращений ядер позволяет установить вполне определенные количественные закономерности для характеристики процесса радиоакивного распада.
 

Cреднее время жизни ядра

 

Единица измерения активности - кюри

  Активация
 Альфа – распад a -Распад характерен для тяжелых нуклидов, у ядер которых с ростом массового числа А наблюдается уменьшение удельной энергии связи (см. рис. 1.4.2). В этой области уменьшение числа нуклонов в ядре ведет к увеличению удельной энергии связи. Но при уменьшении А на единицу увеличение энергии связи оказывается существенно меньше энергии связи нуклона в ядре и испускание протона или нейтрона невозможно.
 

Энергия Альфа частиц

 

Анализ Альфа частиц

 

Постоянная распада

 

Теория Альфа – распада

  Бета – распад ( b -распад) является спонтанным процессом преобразования ядра, в результате которого ядро изменяет свой заряд на ΔΖ = ±1, сохраняя при этом неименное число нуклонов А (массовое число). В некоторых случаях образуются свободные b -частицы (электрон β - или позитрон β + ) или перестает существовать один из электронов («захват» ядром электрона из электронной оболочки) соответствующего атома. Свойства электрона и позитрона тождественны, за исключением знака электрического заряда. Потоки образующихся b - частиц называются b -излучением .
 

Электронный Бета – распад

 

Е-захват

 

Регистрация

 

Энергия

 

Гипотеза Паули

 

Правила отбора Ферми

 

Ядерная изомерия

 

Теория Ферми

 Гамма – излучение ядер Гамма излучение ( g‑излучение) - испускание кванта электромагнитного излучения при спонтанном переходе ядра с более высокого <энергетического уровня на любой нижележащий. Очевидно, что в этом случае А и Z ядра не изменяются. В отличие от рентгеновских и квантов видимого света, испускаемых при переходах атомных электронов, фотоны, испускаемые ядрами, называются g -квантами , хотя для обозначения квантов любого происхождения сохраняется обобщающее название фотон. Излучение g-кванта является основным процессом освобождения ядра от избыточной энергии, при условии, что эта энергия не превосходит энергию связи нуклона в ядре.
 

Образование Гамма квантов

 

Метастабильньми состояния ядер

 

Электроны внутренней конверсии

 

Эффект Мессбауэра

Основы Инженерная графика, черчение, начертательная геометрия