Математика ряды, интегралы, функции

Вычисление интеграла примеры решения задач

Геометрически дифференцируемость функции двух переменных означает существование у её графика касательной плоскости, а дифференциал представляет собой приращение аппликаты касательной плоскости, когда независимые переменные получают приращения dx и dy.

Комплекснозначные функции действительной переменной


Определение

Отображение называется комплекснозначной функцией действительной переменной. Задать функцию можно в виде где - действительные функции.


Предел


Производная

Основные формулы для гиперболических функций В одном и том же множестве может быть задано несколько алгебраических операций. Желая изучать общие свойства сложения и умножения чисел, мы рассмотрим сначала множества с одной алгебраической операцией. Таким образом, мы приходим к первому из основных понятий современной алгебры, именно к понятию группы.

Неопределенный интеграл Первообразная Первообразной функции f на промежутке I называется функция F, такая, что Исчисление высказываний

Комплексные функции Функция комплексной переменной (ФКП) Квадратные уравнения и неравенства

Возникновение неевклидовой геометрии Лобачевского

Попытки доказать аксиому параллельности евклидовой геометрии. Геометрию, изучаемую в средней школе, называют часто евклидовой геометрией, по имени знаменитого древнегреческого математика Евклида, написавшего один из первых курсов элементарной геометрии. По этому курсу изучали геометрию многие поколения людей в течение двух тысячелетий. Евклид стремился к строго дедуктивному построению геометрической науки, т. е. к построению, при котором в основу кладется небольшое число недоказываемых предложений - аксиом, связывающих основные геометрические объекты ("точка", "прямая" и т. д.) и отношения (например, "точка принадлежит прямой"). Несмотря на то, что замысел этот не был в полной мере осуществлен Евклидом, его "Начала" сыграли выдающуюся роль в истории науки - это был первый развернутый пример дедуктивного изложения научной теории, послуживший прообразом всех дальнейших построений подобного рода.

Для функции двух переменных понятие дифференциала является значительно более важным и естественным, чем понятие частных производных. В отличие от функций одного переменного, для функций двух переменных существование обеих частных производных первого порядка ещё не гарантирует дифференцируемости функции.
Решение неопределенного интеграла