Энергосбережение промышленности эффективность

Энергосбережение в энергетике и теплотехнология

Утилизация теплоты агрессивных жидкостей

 В производстве серной кислоты большая часть ВЭР (95 %) заключается в физической теплоте кислоты, которая в процессе ее получения охлаждается от 80-140 °С до 40-60 °С. В среднем с 1 т выпускаемой серной кислоты отводится примерно 3,35 ГДж тепла. В стране производится ~10×106 т кислоты, потери составляют ~63-65 млн. ГДж в год.

 В теплообменниках спирального, оросительного и пластинчатого типа невозможно предотвратить попадание кислоты в охлаждающую среду. Для утилизации теплоты агрессивных жидкостей были предложены конструкции теплообменников с промежуточным теплоносителем (рис. 43). Межтрубное пространство заполнено промежуточным теплоносителем (очищенная вода, фреон, аммиак). Из корпуса предварительно отсасывают воздух и создается разряжение, соответствующее температуре кипения промежуточного теплоносителя. В нижнюю трубчатую поверхность подается охлаждаемая серная кислота, в верхнюю - охлаждающая вода. Кислота отдает теплоту промежуточному теплоносителю, который вскипает. Пар промежуточного теплоносителя конденсируется на верхних пучках труб, отдавая теплоту охлаждающей воде. Теплообменник прошел испытания на Винницком химзаводе им. Я.М. Свердлова. Техническая характеристика: площадь поверхности для охлаждения кислоты Fк = 20 м2, площадь поверхности для

Рис. 43. Схема теплообменника с промежуточным теплоносителем

нагрева воды Fв = 40 м2, тепловая производительность 0,465 мВт, расход воды 40 м3/ч, кислоты 50 м3/ч.

 Экономически невыгодно в одном теплообменнике охлаждать кислоту и нагревать воду поэтому утилизационная установка состоит из нескольких последовательно включенных аппаратов. При этом воду можно нагреть до температуры 80 °С, а кислоту охладить до 40 °С. Выходящая из абсорбера серная кислота (рис. 44) с температурой 70-90 °С направляется в каскад последовательно соединенных теплообменников, где охлаждается до 40 °С. В отопительный сезон сетевая вода подогревается в теплообменниках, а затем догревается в бойлере и подается потребителю тепла. Летом оборотную воду подают в градирню. Утилизационная установка может покрывать до 60 % теплоты, требующейся предприятию на отопление.

Рис. 44. Установка для охлаждения агрессивных жидкостей:

1 – бойлер; 2 - потребитель теплоты; 3 – градирня; 4 – сетевой насос; 5 – циркуляционный насос;

6 - теплообменники с промежуточным теплоносителем;

7 – абсорбер; 8 - насос

Тепловой баланс

Количество теплоты, отдаваемое кислотой:

  . (75)

Количество теплоты, получаемое водой:

  . (76)

То же самое количество теплоты передается через теплообменные поверхности:

 ; . (77)

Температурный напор Dt рассчитывается относительно температуры кипения промежуточного теплоносителя:

То же самое количество :

 ; . (78)

Первичная обработка и подготовка нефти:
" автоматическое частотное управление производительностью насосных агрегатов для поддержания технологических параметров: давления, расхода, уровня, температуры и т.п.;
" повышение точности и быстродействия работы запорно-регулирующей арматуры;
" высокая точность дозирования и подачи в нефть при ее добыче и подготовке различных реагентов;
" энергосбережение и увеличение срока службы оборудования.
Нефтепереработка:
" автоматическое частотное управление производительностью насосных агрегатов для поддержания технологических параметров: давления, расхода, уровня, температуры и т.п.;
" повышение точности и быстродействия работы запорно-регулирующей арматуры;
" увеличение производительности;
" энергосбережение и увеличение срока службы оборудования.
Что же касается экономической эффективности, то необходимо учитывать не только прямую экономию электроэнергии, достигающую 54-56%, но также и экономию переносимой среды (или, что наиболее актуально в нефтяной, газовой и химической промышленности, недопущение попадания агрессивной переносимой среды в окружающее пространство), тепла, ресурсов оборудования и пр.

Утилизация теплоты вентиляционных выбросов Проблема утилизации теплоты вентиляционных выбросов - это во многом проблема трассировки воздуховодов, если иметь в виду существующие схемы приточной и вытяжной вентиляции.

Наружный воздух, забираемый приточным вентилятором, проходит через фильтр наружного воздуха и подается на нагревательный теплообменник (рис. 46).

Для утилизации теплоты вентиляционного воздуха в жилых помещениях фирмой «Wiessmann» разработан агрегат Vitovent - 300 (рис. 47).


В закрытой схеме сбора конденсата конденсатосборный бак не сообщается с атмосферой. При этом различают следующие основные варианты отвода тепла от конденсата: схема с предварительным охлаждением конденсата в рекуператоре и схема с конденсатором пара вторичного вскипания. С точки зрения простоты изготовления и обслуживания, а также более полной утилизации теплоты предпочтительна схема с предварительным охлаждением конденсата.
Использование отработавшего пара